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SOLAR HEATING OF A ROTATING SPHERICAL SPACE 

VEHICLE 

W. E. OLMSTEADt and S. RAYNORS 

Northwestern University, Evanston, Illinois 

(Received 25 January 1962) 

Abstract-This paper is concerned with the temperature distribution of a thin-walled spherical 
satellite subjected to solar radiation. The satellite rotates about an axis perpendicular to the incident 
radiation. The linearized differential equation of the temperature distribution is solved in terms of 
Legendre polynomials and associated Legendre functions. The results demonstrate the role of the 
angular velocity in the temperature distribution. A numerical example is included and an error analysis 

is performed in order to evaluate errors due to the linearization process. 
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NOMENCLATURE 

average absorptivity of the wall 
material ; 
aK,g{ -- 
T&S’ 

a dimensionless group; 

pc&w -- 
k ’ 

a dimensionless group; 

coefficients of expansion of the 
radiation input function; 
coefficients of expansion of the 
radiation input function; 
4-1 er:Ti 

ks’ 
a dimensionless group; 

specific heat of the wall material; 
coefficients of expansion of the 
radiation input function; 
coefficients of solution of the 
differential equation; 
coefficients of solution of the 
differential equation; 
average emissivity of the wall 
material ; 
coefficients of solution of the 
differential equation; 
radiation input function in the r, 
4, 4 co-ordinate system; 
radiation input function in the r, 
8, + co-ordinate system; 
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thermal conductivity of the wall 
material ; 
energy per unit area and time 
received by a plane normal to the 
parallel radiation; 
Legendre polynomial of degree n; 
associated Legendre function of 
order m and degree n; 
spherical co-ordinates (radius, 
longitude, co-latitude) fixed with 
respect to the incoming parallel 
radiation; 
spherical co-ordinates (radius, 
longitude, co-latitude) fixed with 
respect to the rotating satellite; 
radius of the satellite; 

zS (4uedK:)lf”, a dimensionless 

parameter of the solution; 
wall thickness; 
spherical surface area in the r, #, 
4 co-ordinate system; 
time variable in the r, IJ, 4 co- 
ordinate system; 
local satellite temperature (abso- 
lute) in the r, 0, 4 co-ordinate 
system; 
non-dimensional variation from 
the average temperature; 
FA- a; 
reference temperature (absolute); 
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true satellite temperature (abso- 
lute) that would be found from the 
solution of the non-linear problem; 
cos 4; 
co-ordinate axes fixed with respect 
to the incoming parallel radiation; 
k 

-, thermal diffusivity; 
PC, 
coefficient of the solution of the 
differential equation; 
coefficient of the solution of the 
differential equation; 
angle of shift of positions of 
maximum temperature; 
angle of shift of positions of 
minimum temperature; 
error in overall heat balance 
induced by the linearized solution; 
local error in the temperature 
induced by the linearized solution; 
weighted average of ET over the 
entire satellite; 
density of the wall material; 
Stefan-Boltzman constant; 
local satellite temperature (abso- 
lute) in the Y, 4, 4 co-ordinate 
system; 
angular velocity of the satellite; 
a 
y,z, “thermal angular velocity”; 

w 
w*, a dimensionless parameter of 

the solution. 

INTRODUCTION 
THE design of space vehicles and satellites has 
stimulated an interest to find the surface tem- 
perature distribution for various geometrical 
shapes exposed to solar radiation. A brief review 
of literature can be found in reference [l]. The 
references included in this paper pertain directly 
to the case under consideration.? In this study, 
a thin-walled spherical satellite, rotating about 
an axis of symmetry, is considered. Furthermore, 
this axis is perpendicular to a line connecting the 
center of the radiation source with the center of 
the satellite. 

t A very recent contribution to the field is given in 
reference I51. 

A quasi steady state exists when a balance has 
been achieved between the radiant heat absorbed 
by the satellite and the heat re-radiated into 
space. The characteristic of this state is that each 
point on the rotating shell will experience the 
same temperature upon returning to any given 
position which is fixed with respect to the radia- 
tion source. It is the temperature distribution 
associated with this quasi steady state which will 
be investigated. 

During the space flight of the satellite, the 
external convection heat transfer wilI be neg- 
lected. Furthermore, it is assumed that the 
satellite design is such that all heat transferred 
internally can be neglected. The shell thickness 
wifl be considered as sufficiently thin for neglec- 
tion of temperature gradients in the radial 
direction; thus heat is conducted only in direc- 
tions tangent to the shell surface. It is assumed 
that the distance separating the source and 
satellite surface is large, so that the entire satellite 
surface radiates to space. Also, the effective 
temperature of space is assumed to be quite 
small as compared with the satellite temperature, 
so that radiation from the satellite is propor- 
tional to the fourth power of satellite temperature 
alone. 

1. DIFFERENTIAL EQUATION OF THE 
TEMPERATURE DISTRIBUTION 

1.1. The energy balance for a volume element 
A spherical shell of radius r. and thickness s 

is fixed in a spherical co-ordinate system of r 
(radius), # (longitude), + (co-latitude). The 
sphere and its co-ordinate system rotate, with 
angular velocity w, about the Z-axis of an X, Y, 
2 co-ordinate system. The incoming radiation is 
normal to the X&plane (Fig. 1). 

The energy balance for a volume element of 
the shell is 

qadSdt -qodSdt - d&dt = pe,;dVdt 

(1.1) 
where 

q&b, 4, t) = radiant heat absorbed at the 
external face of the volume 
element per unit area and time. 
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FIG. 1. Satellite co-ordinate system. 

q&J, 4, r) = heat radiated into space from 
the external face of the volume 
element per unit area and time. 

dQ& 9, r) = net conducted heat outflow 
from the volume element per 
unit time. 

T(#, $, r) = surface temperature (absolute) 
of the shell. 

a7 
PCP & = heat stored per unit volume and 

time. 
dS = surface area differential. 
dV = volume differential. 
dr = time differential. 

(a) Absorbed radiant energy, qt, is 

where 

(1.2) 

4 = average (with respect to wave 
length and angle of incidence) 
absorptivity of the satellite 
material. 

KS = energy per unit area and time 
received from the radiating 
source by a plane normal to the 
radiation. 

f (#, 9, r) = a function dependent on the 
geometry of the system (to be 
defined later). 

(b) The energy radiated from the satellite. into 
space, q,,, is found from the Stefan-Boltzman 
law, 

where 
rlo = uer4 (1.3) 

u = Stefan-Boltzman constant, 
e = average total hemispherical 

emissivity of the satellite 
material for the spectrum of 
wave length radiated. 

(c) The net conducted heat outflow from the 
volume element, dQc, consists of two compon- 
ents. As indicated in Fig. 2, Q, is the heat 

FIG. 2. Heat flow in a spherical volume element. 

conducted in a direction normal to the area 
dS,, and Q, is the heat conducted in a direction 
normal to dS,. Thus, 

From the Fourier law of heat conduction, the 
geometry of the volume element and the heat 
balance follows 
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FIG. 3. Moving and fixed co-ordinate systems. 

Equation (1.4) is the general differential equa- 
tion for the local satellite temperature as a 
function of position and time. 

Consider another spherical co-ordinate system 
r, 8, # which is fixed with respect to the radiation 
source, and hence is fixed with respect to the 
X, Y, 2 co-ordinate system (Fig. 3). When a 
balance has been achieved between the absorbed 
radiation and the heat re-radiated from the 
satellite, then any point, P(r,, $, (p) on the satellite 
will have a temperature which is varying in a 
periodic manner with time; and each time this 
point coincides with a fixed position, P(r,, 8, #), 
the same temperature will result. Hence, a 
temperature which is time independent can be 
associated with every fixed position, P(rO, 8, 4). 
This is the quasi steady state temperature 
distribution. Schneider [23 gives the mathe- 
matical transformation between the fixed and 
moving system in Cartesian co-ordinates. Ex- 
tending to the spherical co-ordinate system 
used here, 

(I=+-@wt t’ = t d, = + (1.5) 

where t’ is the time variable in the r, 8, # system. 
Further, define 

dv4 0, t> =: T(@, $1 w-3 

fcf4 6, t) =z w, $1. (1.7) 

The general transformations for the first 
partial derivatives are, 

BT .3T a0 aT at’ 

$3; 
= gg q -t T&i T&j 

a-r 3T a# -_ --+Sf:^f t _ a8 at 

37 %T 
i;$ = ;14. (1.8) 

From (1.5), %I/?$ =: 1 and 8Oj& -= --CO. Also 
iiT/&’ = 0 since the temperature in the Y, 0, (b 
system does not vary with time. The general 
differential equation (1.4) becomes 

(1.9) 

1.3. Linearization oJ‘ the diflerential equation 
(1.9) is non-linear. To linearize this equation, 

the following definition is made, 

T = T,(l + f’). (1.10) 

It is assumed that the temperature variation T, 
about some reference vatue T,, is small compared 
to unity. Therefore, 

T”wTl(1 _t4i;). 

Further define 

7‘=?-+& (1.11) 

It follows that 
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(1.9) takes the form along the Y-axis, and iir is a unit vector normal 
to the surface of the satellite and directed in- 
wardly (Fig. 3). It follows, 

(1.13) is the general linearized equation for the 
non-dimensional temnerature variation T. 

io 

(1.18) 

Introducing the constants, 

pcpt!+ 

h’=-E-- 
4aer2T3 

(.’ __~$__? 

2. THE TEMPERATURE DIS’lXIBb~ION 
(1.14) The geometry of the problem indicates a 

solution in terms of associated Legendre func- 

(1.15) 
tions. For this reason it is desirable to expand 
the radiation input in terms of these functions. 

aK;sr’z 
a’ = - ---! 

T&s (1.16) 

yields the following equation 

:= a’F(B, 4). (1.17) 

(1.17) may be reduced to the corresponding 
equation for a cylindrical shell (which rotates 
about its geometric axis) by imposing the condi- 
tions aTjPja+ : 0 and $ = ~12. 

1.4. Radiation input .fumtion 
One half of the satellite is in darkness while 

the other half is illuminated by the incoming 
radiation. At the surface of the satellite, the 
region of darkness is defined by n s d _I 27;, 
06+s?r, while the illuminated region is 
defined by 0 $ 0 5 Z-, 0 5 d I m. - , -. 

The radiation input function F(B, 4) gives at 
each point, P(r,, 8, $), the component of 
incident radiant energy which is normal to the 
surface of the satellite. For the dark region, 

F(‘(e, I$) =-= 0. 

For the illuminated region, 

F(B, 4) = a. fir 

2.1. Expansion of the radiation input function 
Since any piecewise continuous function of 0 

and 9, for 0 6 0 5 27r and 0 $ 4 5 n, can be 
expanded in a series of spherical harmonics [3], 

+ C (B,” cos rn@ + c sin mQe(cos +)]. 
+X=L 

(2.1) 

P,(cos +) is the Legendre polynomial of the 
first kind, and ~(COS +) is the associated 
Legendre function of the first kind. The defini- 
tions of these functions are 

K(s) = (1 - .xZ),iZ ;$i P?&(x) 

where 
.u = cos 4. 

The coefficients of (2.1) are [3] 

where 4 is a unit vector directed negatively cos me dx d0 
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C”_2n+1(?Hn)! 2= 1 -_ -- ” 
ss 27r (n + m)! 0 _IP@ xRXx) 

sin m0 dx d0 

where P(0, x) is found from (1.18) by substitu- 
tion of x = cos 4, 

[ (1 - x2)‘/” sin 0 0 5 e 5 T, 
I 

fye, X) = 

i 0 

i 
- 1lxSl. J 

(2.2) 

Utilizing the relations, [4] 

f0 ,n#l 

B; = 0 B; = 0 

1 
B,” = - 256 

B; = 0 B4” = 0 

I 
5 

B;E-~ 
1 

B’4=-m 

Bj = 0 
I 

I 

B; = 0 

B: = 0 J 

2.2. Solution of the d@erential equation 
For the general solution of (1.17), assume 

9i = (r cos 0 + ,E sin 0) sin $ + g D,P%(cos #J) 
n=l 

.P-I FXXE(X) dx = -! 
I 

2 (n + m) ! 
5q-l (n’ 

n=I f 2 2 (D,” cos me+ E,” sin me)c(cos 4). 
n=l rn=l 

it follows (2.9) 

c: = 4 
After a change of variable 

c,:=o n#l (2.3) 
x = cos + (2.10) 

C;=O m#1. (2.9) is introduced into the differential equation 
(1.17), utilizing the following relations 

Finally, the expansion of P’(f?, +) becomes 

F(i(e, 4) = 4 sin e sin + % [(1 - x2) ‘21 = - n(n + l)Pn(x) 

03 ” 
+ Z [&P,(cos #) + C B,” cos me e(cos +)I 

n=O nr=l & 
(2.4) 

d [(I - x2) 93g)] 

where =- 
[ 
n(n+ 1)-g2 

I 
Pzx). 

B =2n-I-1 
n---- 2?r s 

1 
(1 - x2)“” Pm(x) dx (2.5) After regrouping it follows that 

-1 r 
._=_2n+1(n-m)!(-l)m+1 [b’j3 - (d + 2)y] cos e 

I 27r (n+m)! m2- 1 

St1 (1 - x2)ri2 c(x) dx, m # 1 (2.6) 
+ 

[ 
- b’y - (c’ + 2)/3 - g 

I > 
sin 0 sin 4 

B,: = 0. (2.7) + g {- [c’ + n(n + l>l& - a’&P&os 4) 
?I=0 

A few values for Bn and B; were computed : 
+ f! i { - k’ + n(n + 1)l R + 

: 

41 =a B,=O II=1 rn=l 

Bl = 0 
9 + b’mE; - a/B,“} cos m0 ~(COS 4) 

B4=-256 (2.8) 

,_ B, = - c2 
+ 2 5 (- b’mD: - [c’ + n(n + l)]E,“) 

Bs = 0 
n=x m=* 

sin me ~(COS 4) = 0 (2.11) 
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(2.11) will be valid for all values of 4 and 0 if 

Dn= - 
a’B, 

c’ + n(n + 1) 
(2.12) 

0,” = 
- a’[c’ + n(n + l)]B; 

[c’ + n(n + l)]” + m2b’2 ‘2’13) 

E,” = 
ma’b’B,” 

[c’ + n(n + l)]” + m2b’” 
(2.14) 

- a’b’ 

’ = 2[(c’ + 2)2 + b’2] 
(2.15) 

- a’(c’ + 2) 
’ = 2[(c’ + 2)2 + b’2]’ 

(2.16) 

2.3. Continuity conditions 
It can be seen by inspection that the assumed 

temperature distribution, T = T,,@ + r) and 
(2.9), satisfy the continuity conditions, 

T(ro, % +) = Wo, 0, + 2~3 +) 

2.4. Average temperature 
In the general solution for the temperature 

distribution, T = T,($ + 2‘), the reference tem- 
perature T, appears in the solution explicitly and 
also implicitly through the constants y, 8, D,, 02 
and E,“. 

This reference temperature may be defined as 
the average temperature 

T =itTdA 
’ s* dA ’ 

Since T = To( 1 + 0, it follows that JA i; dA = 0. 
The heat radiated to space is equal to the 

energy absorbed and therefore 

oe j-4 T4 dA % ae JA Tt( 1 + 4p) dA = 4rrr$eTi 

= jl j: aK8ro sin 0 sin2 4 d$ d6’ = aK&$ 

and 

(2.17) 

Charnes and Raynor [l] show that the average 
temperature for the cylinder is 

2.5. Dimensionless groups 
The constants a’, b’, c’ which appear in the 

differential equation and solution are related to 
dimensionless groups 

(2.18) 

Substituting (2.17) into (2.18) gives 

C’ 
_=- 

a’ 
1. (2.19) 

A new dimensionless group called the thermal 
radius can be defined 

0 
R = 2 (40ea3K:)‘j4. (2.20) 

Then 
c’ = R (2.21) 

a’ = --R. (2.22) 

A thermal angular velocity can be defined 

m* = ” 
rg 

(2.23) 

where 
k 

a =--_ 
PC, 

Further, a non-dimensional angular velocity can 
be defined 

w 
wo=-. w* (2.24) 

From (1.14) it is seen that 

b’ = wo. (2.25) 

2.6. Solution summary 
In non-dimensional form the temperature 

distribution is given by 

T(roY &+) 
To =% 

-i- (r cos 0 + ,5 sin 0) sin 4 + g DnP&os 4) 
n=0 

+ g ? (D:: cos m0 + E; sin mO)Pp,“(cos 4) 
n=, n&=1 

(2.26) 



1172 W. E. OLMSTEAD and S. RAYNOR 

where 

’ = 2[(R + 2)2 + w;] 
(2.28) 

R(R + 2) 
’ = 2[(R + 2)2 + w;] 

(2.29) 

r;t, = R + n(rz + 1) 

(2.27) 

{2.30) 

RIR + 4~ + 1)lB: - D,” = [R + n(n + l)]” -C_ F&U; 
(2.31) 

mRw,B,” 
Ez = - [R + n(n + 1 jjz + m2w;* (2*32) 

The dimensionless parameters R and w0 are 
defined by (2.20), (2.23) and (2.24). The co- 
efficients B, and B: are given by (2.5), (2.6) and 
(2.7). Some values of 3% and B,” are given by 
(2.8). 

-,=a 

R= I.755 

r. = 503.7 -lx 

3. DISCUSSION OF THE RESULTS 

The non-dimensional Iocal temperature T/To 
of the satellite is a function of two non-dimen- 
sional parameters R (thermal radius) and w0 
(non-dimensional angular velocity). 

3.1. Limiting cases 
The temperature distribution for the following 

cases will be considered. 
Case I. con-rotating sphere 

FIG. 4. Quasi steady temperature distribution for 
0,” := m. 

T 
- =$+/3sinBsin#+ g ~~~~(~0s~) 
TO ?a=0 

+ g i 0,” cosm8~(cos~) (3.1) 
n=l m=l 

In general, the positions of maximum and 
minimum temperature with respect to longitude 
B are found by requiring that ~~~~~ = 0. Apply- 
ing this to (2.26) yields 

(y sin 8 - /3 cos 0) sin 4 

+ %g, mzlm(D: sin m0 - E,” cos me)P,m 

p=l R R&t (cos 9) = 0. (3.5) 
2(R + 2) Dn = Fj%n(n) 

For given values of co-latitude $, (3.5) becomes a 
RB,” 

D’ = R + n{n + 1) ’ (3.2) 
transcendental equation in 8. Due to the com- 
plexity, only the leading term of the series was 
considered. Thus 

The ma~mum tem~rature occurs at 4 = n/2 
and 8 = m/2. The minims temperature occurs ysinB - /3cosB 

at 5, = rr/2 and B = (312)~. = 16EZ sin (5) cos 28 - 16D.? sin 4) sin 28. \ = I, \ ‘. *r (3.6) . - 

The difference between the maximum and 
minimum temperature is 

T max - T min R 

TO = x-p+ 

Case 2. Infinitely high velocity 

(3.3) 

T 
- = 2 Jr $ DBPn(cos #). 
T* n-O 

(3.4) 

The temperature is independent of the longi- 
tude 8. The temperature distribution is shown in 
Fig. 4 for the numerical example that follows. 

5mt 
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NONDMENSIONAL ANGULAR VELOCITY, w,, 

FIG. 5. Positions of maximum and minimum temperature. 

The results for the numerical example considered 3.2. Relation of pole temperature to average 
are plotted in Fig. 5. As w + w the values for temperature 
6cvirtual” maximum and minimum temperature An interesting aspect of the temperature dis- 
can be computed from the relation tribution is the behavior of the temperature 

at the satellite poles, 4 = 0,~. At the poles, 

sin 0 sin 4 + g i 2B,” cos rnd P,“(cos +) = 0. (2.26) reduces to 
n=lm=I 

Tpole -5 

Table 1. Asymptotic positions of maximum and 
minimum temperature (a0 = ~0) 

-=$+LR+$+l). 
TO 

?a=0 
-- 

4 
(radians) 

0 180 
4.5 175.5 
8 172 

15 165 
17-5 162.5 
18.5 161.5 

The rest&s are presented in Table 1. It should 
be noticed that both maximum and minimum 
temperature occur on the “sunny” side. These 
values are independent of all physical para- 
meters. 

Since B, = $, this equation becomes 

to 

Tpok? 
-=l-/- 

c 

RB, 

To R+n(n+l)’ (3.7) 
fl=l 

It should be noticed that the pole temperature 
is independent of angular velocity. 

Now consider the two special cases. For 
R=O 

Tp*le 
-= 

TO 
1 

and as R becomes very large, 
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Using the values of the coefficients Bn, it follows 

Thus 

T lim $!.Z = 0.809. 
.R-tCC 0 

(3.8) 

Thus, for all satellites of the type considered, the 
pole temperature will be within 80 per cent of 
the average temperature of the satellite. 

3.3. Error analysis 
Under steady state conditions there will be a 

balance between the total energy absorbed and 
radiated from the satellite; thus, 

JA aK,F(B, (b) dA = j.4 oep4 dA (3.9) 

where p is the true temperature, as would be 
found from the solution of the general non- 
linear differential equation. If the temperature, 
T, given by the linearized equation were used in 
the overall heat balance, there would be an 
error co such that 

s.4 aK$(B, 4) dA = (1 - EQ) JA oeT4 dA. (3.10) 

From (3.10) and definition of To follows 

‘Q = 1 - 4r [ JI Jr (g)lsin+d+dBIP1. 

(3.11) 

Due to the linearization, the radiation effect 
has been slightly moderated; therefore, the true 
temperature would always be less than the 
corresponding temperature found from the 
linearized equation. Thus a temperature error 
function ~(0, $) can be defined 

T = FCl + ET@, +>I. (3.12) 

From (3.9) and (3.10) follows 

Jo F4 dA = (1 - l Q) Jo T4 dA. (3.13) 

Substitution of (3.12) into (3.13) and calling ET 
the average value of ET results in 

(3.14) 

The largest errors are incurred when tempera- 
tures deviate greatly from the average tempera- 
ture To. This occurs for w. = 0. Using the 
data for the numerical example that follows, 
EQ was determined through numerical integra- 
tion of (3.11). It was found that EQ = 0.10 
resulting in ET = 2.8 per cent for w. = 0. 

3.5. Numerical example 
In order to compute the non-dimensional 

temperature distribution T/T,, the following 
values for the physical parameters were selected 
as representative of an aluminum alloy satellite 

radius r. = 1 ft 
wall thickness s = l/200 ft 
thermal conductivity k = 100 Btu/ft h degR 
thermal diffusivity a = 3 fP/h 
solar constant Ks = 442 Btu/ft2h 
radiation constant rr = 0.1717 x lo-*Btu/ 

ft2h degR4. 

Furthermore, the surface of the satellite will be 
considered as “thermally black” in order to 
maximize the radiation effects. From the above 
values result 

m* = ” 
r,” 

= 3 rad/h 

= 503.7 degR. 

In order to demonstrate the role of angular 
velocity, a range of values of w were chosen; 
these correspond to values of the non- 
dimensional parameter w. = W/W*. 

To compute the temperature distribution, 
(2.26) was approximated with terms through 
n = 4 and m = 4. From this approximation, 
the temperature distribution as a function of 
longitude 0 was determined for four positions 
of co-latitude, 4 = 0, ~18, a/4, 7~12. Values of 
w = 0, 8.710 and 87.10 rad/h were chosen; 
these correspond to values of w. = 0, 2.903 and 
29.03 respectively. These data are plotted in 
Figs. 6, 7 and 8. The temperature at the pole 
$ = 0 is independent of longitude 6 and angular 
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‘Y’O 
R= tms 
L.503.7.R 

FIG. 6. Quasi steady temperature distribution for w. + 0. 

650 

t 

FEG. 7. Quasi steady temperature distribution for w0 = 2.903. 
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we=2903 

600 - R = I.755 

T. = 503.7aR 

650- 

450 

400 I I / L 0 
0 In I* Ir * I7 i* I* 2* 

4 2 4 4 2 I 

FIG. 8. Quasi steady temperature distribution for w0 -= 29503. 

velocity w, thus it appears as the same horizontal 
line in these figures. Comparison of Figs. 6, 7 
and 8 shows, that as OJ~ increases, the tempera- ” 
ture distributions at $I = ~-18, n/4? 7~12 flatten 3. 
out, while the positions of maximum and mini- 
mum temperature shift in the direction of 4. 
rotation, Fig. 5. 

3 . 
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R&urn&Cet article etudie ladistribution de tempkratures d’un satellite sphCrique & paroi mince 
soumis au rayonnement solaire. Le satellite tourne autour d’un axe perpendiculaire au rayonnement 
incident. L’Bquation diffkrentielle IinCaire de la distribution de tempkratures est rCsolue en fonction des 
polyn6mes de Legendre et de leurs fonctions associhes. Les rtsultats montrent l’influence de la vitesse 
angulaire sur la distribution des temp&atures. Un exemple numtrique est don& et Ies erreurs dues g 

la lintarisation des equation sant tvaluees. 

Zusammenfassung-An einem diinnwandigen kugelfiirmigen Satelliten wird die Temperaturverteilung 
bei Sonneneinstrahlung behandelt. Der Satellit rotiert urn eine zur einfallenden Strahlung senkrechte 
Achse. Die linearisierte Differentialgleichung der Temperaturverteilung ist in Form von Legendre- 
Polynomen und verwandten Legendre-Funktionen gel&t. Die Ergebnisse zeigen den Einfluss der 
Winkelgeschwindigkeit auf die Temperaturverteilung. Ein numerisches Beispiel und eine Fehleranalyse 

sollen die Abweichungen infolge der Linearisierung zeigen. 
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AHHOT~~IX-B gaInrot cTaTbe paccMaTpnsaeTcn pacnpegeneH&re TeMnepaTypbI B TOHKHX 

CTeHKaX CIIyTHHKa, llMeIOlqer0 $OpMy IIIapa II IICIIbITbIBaIO~erO COJIHe=IHyIO paJWaIW0. 

C~~THL~KB~~~Z~~~T~FIBOK~~~~CM,~~~~~HH~~K~JIFI~HO~K~~A~H)ILZ~M~H~JI~~~HHH). JIweapH30- 

BaHHoe~~@$epeK~~anbKoeypaBKeII~e~n~pacnpe~eneIuvI TeiwnepaTypbI BbIpaHEaeTcfl sepes 

IIOJII~HOM~I JlewaHnpa I4 npmcoe~I4HeHHbIe (PyH~q145f JleHtaIIgpa. Pe3ynbTaTbI nonTsepwnaIoT 

BJILIfIHMe yrJIOBOti CKOpOCTLi Ha pacnpene.neKIze TeMnepaTypbI. 

~IPI~BOHI~TCR WICJIeHHbIti IIpHMep, a TBKH(A aHanII3mpyIoTcFi OIIIH~KLI BbNlICJIeHMR C TeM 

9ToObI 0qewTb norpeunIocTII 38 weT npoqecca nnHeapEI3aqIIn. 


