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Abstract—This paper is concerned with the temperature distribution of a thin-walled spherical

satellite subjected to solar radiation. The satellite rotates about an axis perpendicular to the incident

radiation. The linearized differential equation of the temperature distcibution is solved in terms of

Legendre polynomials and associated Legendre functions. The results demonstrate the role of the

angular velocity in the temperature distribution. A numerical example is included and an error analysis
is performed in order to evaluate errors due to the linearization process.

NOMENCLATURE

a, average absorptivity of the wall

material;
, aKsr? . ionl ]

a, T Tks' a dimensionless group;

b, Eﬁ];(r"w, a dimensionless group;

B, coefficients of expansion of the
radiation input function;

B, coefficients of expansion of the
radiation input function;

, 4o eriT? ) .

¢, IR dimensionless group;

Cp, specific heat of the wall material;

cr, coefficients of expansion of the
radiation input function;

Dy, coefficients of solution of the
differential equation;

Dr, coefficients of solution of the
differential equation;

e, average ecmissivity of the wall
material ;

Er, coefficients of solution of the
differential equation;

I radiation input function in the r,
¥, ¢ co-ordinate system;

F, radiation input function in the r,

6, ¢ co-ordinate system;
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k’

K,
Pr(cos ¢),
Pr(cos ¢),

r, 0,4,

thermal conductivity of the wall
material;

energy per unit area and time
rcceived by a plane normal to the
parallel radiation;

Legendre polynomial of degree n;
associated Legendre function of .
order m and degree n;

spherical co-ordinates (radius,
longitude, co-latitude) fixed with
respect to the incoming parallel
radiation;

spherical co-ordinates (radius,
longitude, co-latitude) fixed with
respect to the rotating satellite;
radius of the satellite;

ra
ks
parameter of the solution;

wall thickness;

spherical surface area in the r, ¢,
¢ co-ordinate system;

time variable in the r, ¢, ¢ co-
ordinate system;

local satellite temperature (abso-
lute) in the r, 6, ¢ co-ordinate
system;

non-dimensional variation from
the average temperature;

T+§

reference temperature (absolute);

(4cea®K)Y4, a dimensionless
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T, true satellite temperature (abso-
lute) that would be found from the
solution of the non-linear problem;

X, cos ¢;

X, Y,Z, co-ordinate axes fixed with respect
to the incoming parallel radiation;

a, —k—, thermal diffusivity;

PCp

B, coefficient of the solution of the
differential equation;

¥, coefficient of the solution of the
differential equation;

Smax, angle of shift of positions of
maximum temperature;

Smin, angle of shift of positions of
minimum temperature ;

€, error in overall heat balance
induced by the linearized solution;

€T, local error in the temperature
induced by the linearized solution;

ér, weighted average of er over the
entire satellite;

Ps density of the wall material;

a, Stefan-Boltzman constant;

T, local satellite temperature (abso-
lute) in the r, ¢, ¢ co-ordinate
system;

w, angular velocity of the satellite;

w*, -:—2, “thermal angular velocity”;

()
g, 2 dimensionless parameter of

the solution.

INTRODUCTION

THE design of space vehicles and satellites has
stimulated an interest to find the surface tem-
perature distribution for various geometrical
shapes exposed to solar radiation. A brief review
of literature can be found in reference [1]. The
references included in this paper pertain directly
to the case under consideration.t In this study,
a thin-walled spherical satellite, rotating about
an axis of symmetry, is considered. Furthermore,
this axis is perpendicular to a line connecting the
center of the radiation source with the center of
the satellite.

+ A very recent contribution to the field is given in
reference [5].
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A quasi steady state exists when a balance has
been achieved between the radiant heat absorbed
by the satellite and the heat re-radiated into
space. The characteristic of this state is that each
point on the rotating shell will experience the
same temperature upon returning to any given
position which is fixed with respect to the radia-
tion source. It is the temperature distribution
associated with this quasi steady state which will
be investigated.

During the space flight of the satellite, the
external convection heat transfer will be neg-
lected. Furthermore, it is assumed that the
satellite design is such that all heat transferred
internally can be neglected. The shell thickness
will be considered as sufficiently thin for neglec-
tion of temperature gradients in the radial
direction; thus heat is conducted only in direc-
tions tangent to the shell surface. It is assumed
that the distance separating the source and
satellite surface is large, so that the entire satellite
surface radiates to space. Also, the effective
temperature of space is assumed to be quite
small as compared with the satellite temperature,
so that radiation from the satellite is propor-
tional to the fourth power of satellite temperature
alone.

1. DIFFERENTIAL EQUATION OF THE
TEMPERATURE DISTRIBUTION

1.1. The energy balance for a volume element

A spherical shell of radius ry and thickness s
is fixed in a spherical co-ordinate system of r
(radius), ¢ (longitude), ¢ (co-latitude). The
sphere and its co-ordinate system rotate, with
angular velocity w, about the Z-axis of an X, ¥,
Z co-ordinate system. The incoming radiation is
normal to the XZ-plane (Fig. 1).

The energy balance for a volume element of
the shell is

0
g1dSdt — godSdt — dQ.dr = pcp-a-;dth
(1.1)
where

qi(, ¢, £) = radiant heat absorbed at the
external face of the volume
element per unit area and time.
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FiG. 1. Satellite co-ordinate system.

qo(¢, ¢, t) = heat radiated into space from
the external face of the volume
element per unit area and time.
dQc(4, #,7) = net conducted heat outflow
from the volume element per
unit time.

7(if, ¢, 1) = surface temperature (absolute)

of the shell.

or .
PCp 3 = heat stored per unit volume and

time.
dS = surface area differential.
d¥V = volume differential.
d¢ = time differential.

(a) Absorbed radiant energy, gy, is

gi = aks f (¢, ¢, 1) (1.2)

where

a = average (with respect to wave
length and angle of incidence)
absorptivity of the satellite
material.

K, = energy per unit area and time
received from the radiating
source by a plane normal to the
radiation.

f@, ¢, ©) =a function dependent on the
geometry of the system (to be
defined later).
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(b) The energy radiated from the satellite, into
space, ¢y, is found from the Stefan-Boltzman
law,

(1.3)

qo = oer?
where

o = Stefan-Boltzman constant,

e = average total hemispherical
emissivity of the satellite
material for the spectrum of
wave length radiated.

(c) The net conducted heat outflow from the
volume element, dQ,, consists of two compon-
ents. As indicated in Fig. 2, Q, is the heat

-2

o,+§'do

FiG. 2. Heat flow in a spherical volume element.

conducted in a direction normal to the area
dS;, and Q, is the heat conducted in a direction
normal to dS;. Thus,

Qe

dQc——¢d¢+a¢ dy.

From the Fourier law of heat conduction, the
geometry of the volume element and the heat
balance follows

1 6’1
Sin® ogd

aK,ro

pCpr F) aT

+ i L (1.4
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F1G. 3. Moving and fixed co-ordinate systems.

Equation (1.4) is the general differential equa-
tion for the local satellite temperature as a
function of position and time.

1.2. Co-ordinate transformation

Consider another spherical co-ordinate system
r, 6, ¢ which is fixed with respect to the radiation
source, and hence is fixed with respect to the
X, Y, Z co-ordinate system (Fig. 3). When a
balance has been achieved between the absorbed
radiation and the heat re-radiated from the
satellite, then any point, P(r,, ¥, ¢) on the satellite
will have a temperature which is varying in a
periodic manner with time; and each time this
point coincides with a fixed position, P(ry, 8, ¢),
the same temperature will result. Hence, a
temperature which is time independent can be
associated with every fixed position, P(rq, 6, ¢).
This is the quasi steady state temperature
distribution. Schneider [2] gives the mathe-
matical transformation between the fixed and
moving system in Cartesian co-ordinates, Ex-
tending to the spherical co-ordinate system
used here,

b=¢p—wt p=¢ (L5

where ¢’ is the time variable in the r, §, ¢ system.
Further, define

== f
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(4, 8, 1) = T8, ¢) (L.6)
TG ¢, 1) = F(6, $). (1.7

The general transformations for the first
partial derivatives are,

oT _oToe0  oT or

o " edap T o 3y

or orof oror

ot or o ar

ar T

= o (1.8)

From (1.5), 80/0y == 1 and 260t = —w. Also
aTfet’ = O since the temperature in the r, 6, ¢
system does not vary with time. The general
differential equation (1.4) becomes

1 &T  peyrie oT
sin? ¢ 96° TR G
1 @ /. oT
g (9 5)
_ feig 3. aKgr;
o TR (19)

1.3. Linearization of the differential equation
(1.9) is non-linear. To linearize this equation,
the following definition is made,

T =Tyl + 1) (1.10)

It is assumed that the temperature variation T,
about some reference value Ty, is small compared
to unity. Therefore,

T4~ TH1 - 4T).
Further define
T=T1T+4% (1.1D)
It follows that

T=T(}+T) T¢*=4T:T

or _oT & _ T or o

=Tysr 7 =Towz ap=Tozp

o 'ved  @E T 0o ap a4
(1.12)
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(1.9) takes the form

1 eéT pCprow oT S A E_T)
T T k@ T %,
doer’T? akKsr,
— T = — Toks F(6,4). (1.13)

(1.13) is the general linearized equation for the
non-dimensional temperature variation T.
Introducing the constants,

pCpl 2(1)

b = T (1.14)
,  doerlT3 _

= 5

¢ s (1.15)
. aKgr§
=~ Tks (1.16)

yields the following equation
1 T el

st a0t T a7
. b e/ 8 ,
*—5"117178?5?; sm¢5$ —'T
=a'F#,4). (1.17)

(1.17) may be reduced to the corresponding
equation for a cylindrical shell (which rotates
about its gcometric axis) by imposing the condi-
tions &T/o¢ =- 0 and ¢ = =/2.

L.4. Radiation input function

One half of the satellite is in darkness while
the other half is illuminated by the incoming
radiation. At the surface of the satellite, the
region of darkness is defined by = < 8 < 2,
0 = ¢ =7 while the illuminated region is
defined by 0 s 0 <=, 05 ¢ < =

The radiation input function F(8, ¢) gives at
each point, P(ry, 0, 4), the component of
incident radiant energy which is normal to the
surface of the satellite. For the dark region,

K@, $) == 0.
For the illuminated region,
F§,¢) = . fr
where ¢ is a unit vector directed negatively
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along the Y-axis, and 7 is a unit vector normal
to the surface of the satellite and directed in-
wardly (Fig. 3). It follows,

[sinfsing0£0=n 0SS
F@®, ¢) = 3
L0 7L0L 2, 0SS

(1.18)

2. THE TEMPERATURE DISTRIBUTION
The geometry of the problem indicates a
solution in terms of associated Legendre func-
tions. For this reason it is desirable to expand
the radiation input in terms of these functions.

2.1. Expansion of the radiation input function
Since any piecewise continuous function of ¢

and ¢, for 0 S 0 < 2rand 0 £ ¢ < =, can be

expanded in a series of spherical harmonics {3},

8

F, 4) = > [BaPu(cos )

e

1
=3

+ 3 (Brcosmb + Crsin ml)Pr(cos ¢)].
m=1
.1
Py(cos ¢) is the Legendre polynomial of the
first kind, and Pm(cos¢) is the associated

Legendre function of the first kind. The defini-
tions of these functions are

dn

Po(x) = s g (62 — 1)

dm
Pr(x) = (1 — x™2 o Pa(x)

where
X =cos ¢.

The coefficients of (2.1) are {3]
Yy b 27 1
By = :”J—I—I X F(6, x)Pa(x) dx df
4m 0o J-1

n

po o it 1(n—m! r" j ' R8P

" 2 (n-+m)! Jo

cos mb dx dé
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21+ 1 (n— m! far 2
n+ EZ"{‘Z;' J J F6, 9P()

sin mf dx dé

where F(8, x) is found from (1.18) by substitu-
tion of x = cos ¢,

((1—x2)1’2s1n60<0<1r

==

—1=2xs1
F(@, x) =
0 7 £ 6 < 27,
L —1lsx£1.
2.2
Utilizing the relations, [4]
J 0 ,nEl
JL, Pr(x)Pr(x) dx = 2 (n+m)' _;
, Mm+im—mr "
it follows
=1
Ci=0 n#1l 2.3)
Cr=0 m#1.
Finally, the expansion of F(f, ¢) becomes
F@,¢)=1%sinfsin¢é
+ % [BnPu(cos ¢) + i Brcos mb P(cos ¢)]
n=0 m=1
2.9
where
1
g, =2t J (=2 P()dx  (2.5)
2 |4
B 2n+1(n—m!(—DHm+1
T 2 (m+m)! mE—1
L (=2 Prixdx, m#£1 (26)
Bl=0, 27
A few values for B, and B™ were computed:
By =} By =0
9
B=0 Bi=—25% | 29
5
| Bi=—3 B; =0
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[ BI=0 Bl=0 7
1
2
Bi=—3s3
Bi—0 B —0
d 2“__5- . | B
Bi=—w  Bi=— 5
Bi=0
B =0
L B3=0 J

2.2. Solution of the differential equation
For the general solution of (1.17), assume

T = (y cos 6 +- B sin 8) sin ¢ + i’ DuPa(cos 4)

-+ E 2 (D"' cos mb 4 E™sin mf)Pm(cos ¢).
T 2.9
After a change of variable
X == Cos ¢ (2.10)

(2.9) is introduced into the differential equation
( 1.17), utilizing the following relations

3 [0 - 5] = = n+ VR
[ (1— dP"'(x)]
= [n(n + 1) — I_T—2x2] Pr(x).

After regrouping it follows that
{168 = &'+ 2mlcos0
+ [— by — (¢ +2)B — %] sin B}Singb

+ i {— [¢’ + n(n + 1)]Dn — @'Bu}Pu(c0S $)

I!Mg

5 3 (¢ +nln+ D) D7+

_—}— b’'mE™ — a'B™} cos md P7(cos ¢)

+3 3 {—bmDr— [+ n(n + DIED)
T im0 Prcos$) =0 (2.11)
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(2.11) will be valid for all values of ¢ and 8 if

Do= s @12)
D = g O e 1
B = s op O
e @1
8 —da((c’ +2) 2.16)

T2

2.3. Continuity conditions

It can be seen by inspection that the assumed
temperature distribution, 7 = Ty} + T) and
(2.9), satisfy the continuity conditions,

T(r09011¢) = T(ry, 6; + 2m, ¢)

oT 0
(ﬁ)ﬁﬂh B (£)0=01+2n
orT 0
(). = (e

2.4. Average temperature

In the general solution for the temperature
distribution, T = T(} + T), the reference tem-
perature T, appears in the solution explicitly and
also implicitly through the constants y, 8, Dy, D
and E™

This reference temperature may be defined as
the average temperature

_J.Ta4
T da

Since T = To(1 + T), it follows that {4 T'd4 = 0.
The heat radiated to space is equal to the
energy absorbed and therefore

oe 4T*dA ~ ve [4 TH1 + 4T)dA = dnriveT?
= J‘;r J’: aKsro sin € sin2 ¢ d¢ dé = aKgrgﬂ

and
aK\1/4
To= (z;z) :

T,

@2.17)

17

Charnes and Raynor [1] show that the average
temperature for the cylinder is
TO _ ( a_]{—s )1/4-

moe

2.5. Dimensionless groups

The constants a’, b’, ¢’ which appear in the
differential equation and solution are related to
dimensionless groups

' . 4oeT}

P oK, (2.18)
Substituting (2.17) into (2.18) gives
cl
P 1. 2.19)

A new dimensionless group called the thermal
radius can be defined

R= }’-s" (4oea®K oA, (2.20)

Then
¢ =R .21)
@ = —R. 2.22)

A thermal angular velocity can be defined

(2.23)
where

Q == ——,
PCp
Further, a non-dimensional angular velocity can
be defined

w
Wy = (2.24)
From (1.14) it is seen that
"= w, (2.25)

-2.6. Solution summary

In non-dimensional form the temperature
distribution is given by

I(ro, 9, ¢)
T,

+ (ycos @ + Bsinf)sing -+ i Dy Py(cos ¢)

- 3
Y

+ i ) (Dp cos mb + E™ sin mb) Pr(cos ¢)
T (2.26)
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where
Ty = (‘%(Z)m (2.27)
= o 2 @)
P Rt o 4 o @29)
Do = R“% 2.30)
br= [RRiRn?; 1(:21;; 1;)-]1%( @31
En mRewoBy 2.32)

"= TR F nln + D + mier

The dimensionless parameters R and w, are
defined by (2.20), (2.23) and (2.24). The co-
efficients B, and B™ are given by (2.5), (2.6) and
{2.7). Some values of B, and B” are given by
2.8).

3. DISCUSSION OF THE RESULTS
The non-dimensional local temperature 777,
of the satellite is a function of two non-dimen-
sional parameters R (thermal radius) and w,
(non-dimensional angular velocity).

3.1. Limiting cases

The temperature distribution for the following
cases will be considered.

Case 1. Non-rotating sphere

T?: =31 Bsinfsing + § Dy Pr(cos ¢)
o n=t
+ 3 3 Drcosmé Prcosd) (3.1
n=1lm=1
B = 5'—&— Dy = i
R+2) R+n(n+1
D RBy (3.2)

*" T RIan+ )

The maximum temperature occurs at ¢ = /2
and 6 == #/2. The minimum temperature occurs
at ¢ = x/2 and @ = (3/2)=.
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The difference between the maximum and
minimum temperature is

Tma.x - Tmin - R

T =R%> 3.3)
Case 2. Infinitely high velocity
T ©
7= § - S, DpPpicos ¢). (3.4

The temperature is independent of the longi-
tude 8. The temperature distribution is shown in
Fig. 4 for the numerical example that follows.

520
si0f
[: 4
g
w
1
2 s00
é Wy = O
w
; R=1755
# 7, =503 7R
430}

480

ml- |

L Lo e
4 L]

DI

COLATITUDE , ¢

Fic. 4. Quasi steady temperature distribution for
gy = @0,

In general, the positions of maximum and
minimum temperature with respect to longitude
6 are found by requiring that 07/268 = 0. Apply-
ing this to (2.26) yields

(ysin# — Bcos@)sing
+ OZD] i‘ m( D sin mg — E™ cos mo) Py
n=1m=1
(cos ¢) = 0. (3.5)

For given values of co-latitude ¢, (3.5) becomes a
transcendental equation in 6. Due to the com-
plexity, only the leading term of the series was
counsidered. Thus

ysinfd — Bcost
= (6EZsin ¢) cos 28 — (6D%sin $) sin 26, (3.6)
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FIG. 5. Positions of maximum and minimum temperature.

The results for the numerical example considered
are plotted in Fig. 5. As w — o0 the values for
“virtual” maximum and minimum temperature
can be computed from the relation

sin 0 sin 96 -+ Z Z 2B cos mb Pr(cos ¢) =

n=1lm=1

Table 1. Asymptotic positions of maximum and
minimum temperature (wy = 0)

0m ax gm in

é
(radians) (degrees) (degrees)

0 0 180
/36 45 1755
/18 8 172
/8 15 165
/6 175 1625
=[2 185 1615

The results are presented in Table 1. It should
be noticed that both maximum and minimum
temperature occur on the “sunny” side, These
values are independent of all physical para-
meters.

3.2. Relation of pole temperature to average
temperature

An interesting aspect of the temperature dis-

tribution is the behavior of the temperature

at the satellite poles, ¢ =0, #. At the poles,
(2.26) reduces to

Tpole_g % RB,
T, * LR—l—n(n—}—l)

Since B, = £, this equation becomes

“‘+ZR+n(n+1) ©-D

It should be noticed that the pole temperature
is independent of angular velocity,

Now consider the two special cases.
R=0

T pole

For

T pole
T,

and as R becomes very large,

=1

T, )
lim 2% =1+ 3 B,

R—>w TO naml
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Using the values of the coefficients By, it follows

. Tpole
lim

"R—oz TO

= (0-809.

Thus

0-809 < -T—;"E <1.

0

(3.8)

Thus, for all satellites of the type considered, the
pole temperature will be within 80 per cent of
the average temperature of the satellite.

3.3. Error analysis

Under steady state conditions there will be a
balance between the total energy absorbed and
radiated from the satellite; thus,

faaKsF(0, $)dA = [40eT*dAd  (3.9)

where T is the true temperature, as would be
found from the solution of the general non-
linear differential equation. If the temperature,
T, given by the linearized equation were used in
the overall heat balance, there would be an
error eg such that

faaKsF6, ¢)dA = (1 — €q) [4 0eT*dA. (3.10)
From (3.10) and definition of T, follows

co=1—dn Ho jz (%)4 sin ¢ dg dB] -

(3.11)

Due to the linearization, the radiation effect
has been slightly moderated ; therefore, the true
temperature would always be less than the
corresponding temperature found from the
linearized equation. Thus a temperature error
function er(f, $) can be defined

T = Tl + er(6, $)]. (3.12)
From (3.9) and (3.10) follows
faT*dA = (1 — ¢g) [4T*dA4. (3.13)

Substitution of (3.12) into (3.13) and calling ép
the average value of er results in
_ —J‘AETT‘ldA_ €Q
T= TaTida T 1=

s (3.149)
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The largest errors are incurred when tempera-
tures deviate greatly from the average tempera-
ture Ty This occurs for w, =0. Using the
data for the numerical example that follows,
€@ was determined through numerical integra-
tion of (3.11). It was found that ¢ = 0-10
resulting in ér = 2-8 per cent for wy = 0.

3.5. Numerical example

In order to compute the non-dimensional
temperature distribution 7/7,, the following
values for the physical parameters were selected
as representative of an aluminum alloy satellite

radius ro = 1ft

wall thickness s = 1/200 ft

thermal conductivity k& = 100 Btu/ft h degR
thermal diffusivity o = 3 ft2/h

solar constant K; = 442 Btu/fth

radiation constant o = 0-1717 x 10-% Btu/
fth degR*.

Furthermore, the surface of the satellite will be
considered as ‘“‘thermally black” in order to
maximize the radiation effects. From the above
values result

_ ﬁ 3RB/A 1.
R = 22 (doedK3)/t = 1755

w* :f = 3rad/h

0

CZK 1/4
T, == (47;) = 503-7 degR.
In order to demonstrate the role of angular
velocity, a range of values of w were chosen;
these correspond to values of the non-
dimensional parameter w, = w/w*.

To compute the temperature distribution,
(2.26) was approximated with terms through
n=4 and m = 4. From this approximation,
the temperature distribution as a function of
longitude 6 was determined for four positions
of co-latitude, ¢ = 0, /8, =/4, =/2. Values of
w =0, 8710 and 87-10 rad/h were chosen;
these correspond to values of w, == 0, 2903 and
29-03 respectively. These data are plotted in
Figs. 6, 7 and 8. The temperature at the pole
¢ = 0 is independent of longitude 0 and angular
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TEMPERATURE , *R

TEMPERATURE , °R

A
650} PN
A »
/ \
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/ \
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| L
600 / ¢= ¢=ir
/
/ \
/ \ w0
/ \ Rx1-758
5501 To» 503-7°R
500
450
AN T A
\'*\_ — H/
A I L] .! ’4 1 54 . [1 o " 1 o { 0
T 14 T v +r Fid rid 2r
Fic. 6. Quasi steady temperature distribution for w, = 0.
650}
STA
r's ~
s N
// \\ Ly
- E -
soor \¢
I/ ¢= %‘l’ \ w,s 2-903
R= 1755
J T,25037°R
550
500
450
A - >
y -
L A L 1 1 1 1 L 8
400 [} 1 3 3
0 T i" ir L 4 }'r ir {-r 2w

Fig. 7. Quast steady temperature distribution for w, = 2-903,
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650~
we = 29-03
600 |- R = |- 755
7o = 503.7°R

T 550}
g
o
>
a
o«
w500
=
w
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450 -

400 : : i ) ! i L g

0 LR 4 lx ir r kX 4 EX ¥ 2x
4 2 4 4 2 4
Fig. 8. Quasi steady temperature distribution for w, == 29-03.
velocity w, thus it appears as the same horizontal cylindrical space vehicle, ARS J. 30, 5, 479

line in these figures. Comparison of Figs. 6, 7 (1960).
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Résamé—Cet article étudie ladistribution de températures d’un satellite sphérique a paroi mince

soumis au rayonnement solaire. Le satellite tourne autour d’un axe perpendiculaire au rayonnement

incident. L’équation différentielle linéaire de la distribution de températures est résolue en fonction des

polyndmes de Legendre et de leurs fonctions associées. Les résultats montrent Pinfluence de la vitesse

angulaire sur Ia distribution des températures. Un exemple numérique est donné et les erreurs dues a
la linéarisation des équation sont évaluges.

Zusammenfassung—An einem diinnwandigen kugelférmigen Satelliten wird die Temperaturverteilung

bei Sonneneinstrahlung behandelt. Der Satellit rotiert um eine zur einfallenden Strahlung senkrechte

Achse. Die linearisierte Differentialgleichung der Temperaturverteilung ist in Form von Legendre-

Polynomen und verwandten Legendre-Funktionen geldst. Die Ergebnisse zeigen den Einfluss der

Winkelgeschwindigkeit auf die Temperaturverteilung. Ein numerisches Beispiel und eine Fehleranalyse
sollen die Abweichungen infolge der Linearisierung zeigen.



SOLAR HEATING OF A ROTATING SPHERICAL SPACE VEHICLE

Anvoramua—B [aHHOR craThbe pAacCMATPUBAETCH paclpefiesieHHe TeMIEPATyPHl B TOHRUX
CTeHKAX CIYTHHKA, MMEWIIEro ¢opMy NIapa U HCIBITHBAIOMET0 COJHEYHYIO DaMaluIo.
CnyTHIK BpAIIAETCA BOKPYT OCH, IePIIeHANKYJIAPHON K IafaioleMy u3ryueHuio. JIuneapuso-
BaHHOe fuddepeHMaIbHOE YPaBHEHNE IJIA paclpefeIeHns TeMIepaTyphl BHPAKAeTCA Yepes
MOJIHOMEI Jleskaugpa u mprcoegnHeHHue pyHKnun Jlexanapa. Pe3ynbTaTsl MOATBEPHAAIOT
BIMsHIE YTIIOBON CKOPOCTH HA pacCHpeeleHIie TEMIIePATyPHL.

[TpuBojuTCcA YUCIEHHBIl TPUMEp, & TAKMKE AHANUBUPYIOTCA OMMOKN BEIYHMCICHHA € TEM

4TO0El OLEHUTH IMOTPELTHOCTH 33 CYEeT IIpoIlecca JINHeapH3aluu.
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